
mergem
Release 1.1.0

The Lobo Lab

Mar 02, 2024

CONTENTS

1 Installing the mergem package 3

2 Using mergem to merge, compare, and translate models 5
2.1 Command-line . 5
2.2 Python . 6

2.2.1 Merge models . 6
2.2.2 Other mergem functions . 7

3 Understanding mergem results 9
3.1 Results from command-line execution . 9

3.1.1 Saving merged model . 9
3.1.2 Printing merging statistics . 9

3.2 Results from python package . 10

4 Visually comparing genome-scale metabolic models 11

5 Updating Database ID mapping dictionaries 13

6 Save ID mapping tables 15
6.1 Saving mappers from the command-line . 15
6.2 Saving mappers using Python script . 15

6.2.1 Custom filenames for saving ID mappers . 15

7 Use examples 17
7.1 Running on Command-line . 17

7.1.1 Merging reconstructions built using different templates . 17
7.2 Importing Python package . 18

7.2.1 Studying model versions . 18

8 Citing mergem 21

9 Acknowledgements 23

10 License 25

11 Contact 27

i

ii

mergem, Release 1.1.0

mergem is a Python library for merging, comparing, and translating genome-scale metabolic models. The library is
publicly available via PyPI at https://pypi.org/project/mergem/ and can be pip installed. mergem can be used on the
command-line and can also be imported within python scripts. The package can take models in various COBRApy
compatible formats such as SBML, JSON, etc. and even COBRApy model objects, when the package is imported.
The results of a single merge include the merged model, jaccard distances between all pairs of models, number of
metabolites and reactions merged, and the mapping of each metabolite and reaction ID in the merged model to the
corresponding metabolite or reaction IDs from each of the input models. Users can optionally select the objective,
provide an output filename for the merged model, and translate the models to a different namespace.

For each input model, mergem converts the metabolite IDs into a common namespace using a database ID mapping
dictionary. Reactions are compared using the participating metabolites (after conversion to common namespace). The
metabolite ID mapping dictionary contains metabolite identifiers from various databases such as ModelSEED, KEGG,
ChEBI, and MetaNetX that have been unified per metabolite. The dictionary thus allows for model metabolites to be
compared more efficiently. The mapping dictionaries can be updated, during which the latest identifier information is
downloaded from each database and identifiers representing the same metabolite are mapped to one another.

mergem is also available in the user-friendly application Fluxer, which produces tidy flux graphs that can visually
compare the complete metabolic network from multiple models. Documentation for Fluxer based merging can be
found on its tutorial page

CONTENTS 1

https://pypi.org/project/mergem/
https://fluxer.umbc.edu
https://fluxer.umbc.edu/tutorial

mergem, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLING THE MERGEM PACKAGE

mergem can be installed from PyPI using pip installer:

pip install mergem

Upon installation, you can check the version using:

mergem --version

3

mergem, Release 1.1.0

4 Chapter 1. Installing the mergem package

CHAPTER

TWO

USING MERGEM TO MERGE, COMPARE, AND TRANSLATE MODELS

mergem can merge, compare, and translate genome-scale metabolic models. The command-line execution can take
input models in various COBRApy compatible formats (SBML, JSON, YAML, and MAT). mergem can be imported
into a python script and the merge function can take cobra objects in addition to filenames. A single objective function
from any of the input models can be set as the objective for merged model. Alternatively, objective functions from all
input models can be merged into a single function and set as the objective in the merged model. The metabolite and
reaction IDS of the merged or standalone models can be translated to any of the database systems supported in mergem.

2.1 Command-line

Once mergem has been installed using pip, the following commands can be run on the command-line. The help argu-
ment displays all the options.

> mergem --help
Usage: mergem [INPUT_FILENAMES] [OPTIONS]

mergem takes genome-scale metabolic models as input, merges them into a
single model and saves merged model as .xml. Users can optionally select the
objective and provide an output filename for merged model.

Options:
-obj TEXT Set objective: 'merge' all objectives (default) or 1, 2, 3...

(objective from one of the input models)
-o TEXT Save model as (filename with format .xml, .sbml, etc.)
-v Print merging statistics
-up Update ID mapping table
-s Save ID mapping table as CSV
-e Uses exact stoichiometry when merging reactions
-p Consider protonation when merging reactions
-a Extend annotations with mergem database of metabolites and reactions
-t Translate metabolite and reaction IDs to a target namespace (chebi, metacyc,␣
→˓kegg, reactome, metanetx, hmdb, biocyc, bigg, seed, sabiork, or rhea)
--version Show the version and exit.
--help Show this message and exit.

For merging two models and setting objective of merged model from first model, use:

mergem model1.xml model2.xml

The -obj argument can be used to set the objective function of merged model. Allowed values include merge to merge
input model objective functions (default) or an integer representing the objective function from the model in order of

5

mergem, Release 1.1.0

input (1, 2, 3, ..):

mergem model1.xml model2.xml -obj 1

To print merge statistics, append the -v argument:

mergem model1.xml model2.xml -v

Output model filename can be provided using the -o argument followed by desired output filename with file format
specified in the extension (.xml, . . .):

mergem model.xml model2.xml -o mergedmodel.xml

Save the ID mapping table as a CSV file by using the -s argument:

mergem model1.xml model2.xml -s

By default, reactions are merged when they have both a similar set of reactants and a similar set of products, without
comparing their stoichiometry. To merge reactions only when they have the same exact stoichiometry in their reactants
and products, use the -e argument:

mergem model1.xml model2.xml -e

By default, reactions are compared ignoring the hydrogen and proton metabolites. To consider also the hydrogen and
proton metabolites when comparing reactions, use the -p argument:

mergem model1.xml model2.xml -p

Metabolite and reaction annotations are merged from all input models. In addition, mergem can extend these annota-
tions using the mergem database. For extending the annotations using mergem dabase, use the -a argument:

mergem model1.xml model2.xml -a

Mergem can translate the metabolite and reaction IDs to another database system when using the -t argument:

mergem model1.xml -t chebi

2.2 Python

2.2.1 Merge models

Import the mergem package to use its modules within a python script:

import mergem

Provide the list of models to be merged:

results = mergem.merge(input_models, set_objective='merge', exact_sto=False, use_
→˓prot=False, extend_annot=False, trans_to_db=None)
merged_model = results['merged_model']
jacc_matrix = results['jacc_matrix']
num_met_merged = results['num_met_merged']
num_reac_merged = results['num_reac_merged']

(continues on next page)

6 Chapter 2. Using mergem to merge, compare, and translate models

mergem, Release 1.1.0

(continued from previous page)

met_sources = results['met_sources']
reac_sources = results['reac_sources']

• input_models is a list of one or more COBRApy model objects or strings specifying file names.

• set_objective specifies if the objective functions are merged (‘merge’) or copied from a single model (speci-
fying the index of the model: ‘1’, 2’, ‘3’, etc.).

• exact_sto use exact stoichiometry when merging reactions.

• use_prot consider hydrogen and proton metabolites when merging reactions.

• add_annot add additional metabolite and reaction annotations from mergem dictionaries.

• trans_to_db translate metabolite and reaction IDs to a target database (chebi, metacyc, kegg, reactome,
metanetx, hmdb, biocyc, bigg, seed, sabiork, or rhea)

• results a dictionary with all the results, including:

• merged_model the merged model.

• jacc_matrix metabolite and reaction jaccard distances.

• num_met_merged number of metabolites merged.

• num_reac_merged number of reactions merged.

• met_sources dictionary mapping each metabolite ID in the merged model to the corresponding metabolite IDs
from each of the input models.

• reac_sources dictionary mapping each reaction ID in the merged model to the corresponding reaction IDs
from each of the input models.

2.2.2 Other mergem functions

The following functions can also be imported from mergem:

from mergem import translate, load_model, save_model, map_localization, map_metabolite_
→˓univ_id, map_reaction_univ_id,

get_metabolite_properties, get_reaction_properties, update_id_mapper

translate(input_model, trans_to_db) translates a model to another target database.

load_model(filename) loads a model from the given filename/path.

save_model(cobra_model, file_name) takes a cobra model as input and exports it as file file_name.

map_localization(id_or_model_localization) converts localization suffixes into common notation.

map_metabolite_univ_id(met_id) maps metabolite id to metabolite universal id.

map_reaction_univ_id(reac_id) maps reaction id to metabolite universal id.

get_metabolite_properties(met_univ_id) retrieves the properties of a metabolite using its universal id

get_reaction_properties(reac_univ_id) retrieves the properties of a reaction using its universal id

update_id_mapper(delete_database_files) updates and build mergem database. It will download the latest
source database files, merge the identifiers based on common properties, and save the mapping mapping tables and
information internally. This process can take several hours. The parameter specifies if the downloaded intermediate
database files are deleted after the update (saves disk space but the next update will take longer; dafault is True).

All the functions can be imported at once with:

2.2. Python 7

mergem, Release 1.1.0

from mergem import *

8 Chapter 2. Using mergem to merge, compare, and translate models

CHAPTER

THREE

UNDERSTANDING MERGEM RESULTS

3.1 Results from command-line execution

3.1.1 Saving merged model

When no output filename and format is given, the command-line execution of mergem without any arguments produces
a .xml file containing the merged model in SBML format with filename that’s a concatenation of the SBML model IDs
of input model files separated by an underscore “_”. mergem uses COBRApy to save the merged model and thus can
save models in the SBML, JSON, and MATLAB formats.

To change the output filename and format, provide the -o argument to the mergem command:

mergem model1.xml model2.xml -o myfilename.xml

In the above example, mergem will save the merged model as myfilename.xml in current working directory.

3.1.2 Printing merging statistics

To print statistics on the input models and the merging, enter the -v argument:

mergem model1.xml model2.xml -v

Once the models are merged, input model Jaccard distances and the number of metabolites and reactions merged are
printed to the console.

Jaccard distances are printed as a matrix with the metabolic and reaction Jaccard distances of pairs of input models.
The matrix follows the format shown below:

9

mergem, Release 1.1.0

where 𝐽(𝑀𝑖,𝑀𝑗) and 𝐽(𝑅𝑖, 𝑅𝑗) represent the metabolite and reaction Jaccard distances between models 𝑖 and 𝑗.

Statistics are printed in the format as shown in the example below:

Jaccard distance matrix: [[0, 0], [0, 0]]
Mets merged: 72
Reacs merged: 94

In the above case, two models were merged. A Jaccard distance of 0 indicates close match with reference model. Thus
the two models are an exact match of each other. The result also shows that 72 metabolites and 94 reactions were
merged between the two models.

3.2 Results from python package

Merging models using the mergem package on a python script returns a dictionary of results including the merged
model, Jaccard distances, number of merged metabolites and reactions, and a dictionary containing the indices of input
models within which each metabolite and reaction were found.

from mergem import merge

merge_results = merge([model1, model2])

Individual results can be accessed using the dictionary keys merged_model , jacc_matrix , num_met_merged ,
num_reac_merged , met_sources , and reac_sources as shown below:

merged_model_obj = merge_results['merged_model']
jaccard_distances = merge_results['jacc_matrix']
num_mets_merged = merge_results['num_met_merged']
num_reacs_merged = merge_results['num_reac_merged']
metabolite_sources = merge_results['met_sources']
reaction_sources = merge_results['reac_sources']

10 Chapter 3. Understanding mergem results

CHAPTER

FOUR

VISUALLY COMPARING GENOME-SCALE METABOLIC MODELS

Visualizing the components of each input model with different colors can help compare and visually identify the com-
ponents that are common between all models or unique to a single model. The large size of genome-scale metabolic
models makes it more challenging to visualize such relationships.

Fluxer is a user-friendly web-application that can visualize genome-scale metabolic models using various graphs and
layouts. We have made mergem available on Fluxer so that users can merge models while also visualizing their compo-
nents. The Fluxer interface can be used to interact with the merged model, simulate knockouts in the merged model and
even download the final metabolic model (in SBML and graphML formats) and its graphs (in PNG and SVG formats).

The Fluxer tutorial page provides details on how to merge models on Fluxer, how to interpret the results and customize
the networks generated.

11

https://fluxer.umbc.edu
https://fluxer.umbc.edu/tutorial

mergem, Release 1.1.0

12 Chapter 4. Visually comparing genome-scale metabolic models

CHAPTER

FIVE

UPDATING DATABASE ID MAPPING DICTIONARIES

The mergem algorithm uses database ID mapping dictionaries to map model metabolite identifiers into an internal
identifier that allows for comparison and merging of metabolites. Updating the mapping dictionary involves download-
ing the latest identifier information from databases such as SEED, MetaNetX, KEGG, etc and linking identifiers across
databases if they represent the same metabolite, after checking for matching properties. The update process can take a
few hours and depends on the internet connection.

The -up argument can be used to update the ID mapping pickles on the command line:

mergem -up

When importing mergem into a python script, the update_id_mapper() function can be called to update the mappping
dictionaries as shown below:

import mergem

mergem.update_id_mapper()

13

mergem, Release 1.1.0

14 Chapter 5. Updating Database ID mapping dictionaries

CHAPTER

SIX

SAVE ID MAPPING TABLES

6.1 Saving mappers from the command-line

The database ID mapping tables can be downloaded as csv files. Each file contains all the universal IDs for either
metabolites or reactions followed by the corresponding cross-referenced identifiers in other databases.

The ID mapping tables are saved as mergem_univ_id_mapper_metabolites.csv and
mergem_univ_id_mapper_reactions.csv in the working directory.

The -s argument can be used to save the ID mapping tables on the command line:

mergem -s

6.2 Saving mappers using Python script

When importing mergem into a python script, the save_mapping_tables() function can be called to save the map-
ping tables as shown below:

import mergem

mergem.save_mapping_tables()

6.2.1 Custom filenames for saving ID mappers

The mapping table filenames can be customized by providing the desired filenames as input to the function.

mergem.save_mapping_tables('custom_met_mapper_filename.csv', 'custom_reac_mapper_
→˓filename.csv')

15

mergem, Release 1.1.0

16 Chapter 6. Save ID mapping tables

CHAPTER

SEVEN

USE EXAMPLES

7.1 Running on Command-line

7.1.1 Merging reconstructions built using different templates

To compare the effect of reconstruction parameters, we merged two P. putida draft reconstructions built on ModelSEED
using either a gram-positive or core template.

mergem -v MS1_PPU.sbml MS2_PPU.sml -o MS1_MS2_merged_PPU.xml

Results from merging the two reconstructions on the command-line using mergem are shown below.

Merging models complete. Merged model saved as MS1_MS2_merged_PPU.xml
Jaccard distance matrix: [[0, 0.02425267907501405], [0.049657534246575374, 0]]
Metabolites merged: 1730
Reactions merged: 1666

The figure below shows the same merging on the web-application Fluxer and can be accessed here.

17

https://fluxer.umbc.edu/model?id=7fe8a8e65427f5f30412cc3341b5ec596e956f42_8483528fcd5891b944d53a6e4f61214acb596f42_obj_merge

mergem, Release 1.1.0

7.2 Importing Python package

7.2.1 Studying model versions

Different versions of models can be compared to analyze elements that were added or removed during update. The
results of comparing three versions of a P. putida KT2400 model using mergem on the Python console are shown
below:

import mergem

input_models_list = ['models/iJN1463.xml', 'models/iJN746.xml', 'models/MNX_iJN746.sbml']
merge_results = mergem.merge(input_models_list, set_objective='merge')

print('Number of metabolites in merged model: ', len(merge_results['merged_model'].
→˓metabolites))
print('Number of reactions in merged model: ', len(merge_results['merged_model'].
→˓reactions))

print("Jaccard matrix: \n", merge_results['jacc_matrix'])

print('Number of metabolites merged between input models: ', merge_results['num_met_
→˓merged'])
print('Number of reactions merged between input models: ', merge_results['num_reac_merged
→˓'])

Running the above script produces the following output:

Number of metabolites in merged model: 2186
Number of reactions in merged model: 3001
Jaccard matrix:
[[0, 0.5976168652612283, 0.5986270022883295], [0.6765588529509836, 0, 0.
→˓00658616904500553], [0.679, 0.01526717557251911, 0]]
Number of metabolites merged between input models: 1783
Number of reactions merged between input models: 2024

The same result including the Jaccard matrix can be visualized on Fluxer as shown below:

18 Chapter 7. Use examples

mergem, Release 1.1.0

The above Fluxer result can be accessed here.

7.2. Importing Python package 19

https://fluxer.umbc.edu/model?id=f4f30bd4265c5734d98b719ce39e0dbbd5d4ecfb_0bab56f8be08a3d62f24dd16c00b6b01fd85cb27_7fe25baa10e0f3ee212b5b8b4edc4742e5ebfd8b_obj_merge

mergem, Release 1.1.0

20 Chapter 7. Use examples

CHAPTER

EIGHT

CITING MERGEM

Please cite mergem using:

mergem: merging, comparing, and translating genome-scale metabolic models using universal identifiers
A. Hari, A. Zarrabi, D. Lobo
NAR Genomics and Bioinformatics, 6(1), lqae010, 2024

Contributors:

Archana Hari
Arveen Zarrabi
Daniel Lobo

21

https://doi.org/10.1093/nargab/lqae010
https://www.linkedin.com/in/archana-hari/
https://www.linkedin.com/in/arveen-zarrabi/
http://biology.umbc.edu/directory/faculty/person/DQ02490/

mergem, Release 1.1.0

22 Chapter 8. Citing mergem

CHAPTER

NINE

ACKNOWLEDGEMENTS

We thank The Lobo Lab for their help with software testing and The University of Maryland Baltimore County for its
resources and support.

We also thank the following packages and databases for their public resources:

1. COBRApy

2. Click

3. ModelSEED

4. KBase

5. MetaNetX

6. KEGG

7. ChEBI

23

https://lobolab.umbc.edu
https://opencobra.github.io/cobrapy/
https://click.palletsprojects.com/en/8.0.x/
https://modelseed.org/
https://www.kbase.us/
https://www.metanetx.org/
https://www.genome.jp/kegg/
https://www.ebi.ac.uk/chebi/

mergem, Release 1.1.0

24 Chapter 9. Acknowledgements

CHAPTER

TEN

LICENSE

This package is under GNU GENERAL PUBLIC LICENSE. The package is free for use without any express or implied
warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission
is granted to anyone to use this software for any purpose, subject to the following restrictions:

1. The origin of this software and database must not be misrepresented; you must not claim that you wrote the
original software.

2. If you use this software and/or database in a work (any production in the scientific, literary, and artistic domain),
an acknowledgment and citation (see publication above) in the work is required.

3. This notice may not be removed or altered from any distribution.

25

mergem, Release 1.1.0

26 Chapter 10. License

CHAPTER

ELEVEN

CONTACT

Please contact The Lobo Lab with any questions and suggestions.

27

https://lobolab.umbc.edu/contact

	Installing the mergem package
	Using mergem to merge, compare, and translate models
	Command-line
	Python
	Merge models
	Other mergem functions

	Understanding mergem results
	Results from command-line execution
	Saving merged model
	Printing merging statistics

	Results from python package

	Visually comparing genome-scale metabolic models
	Updating Database ID mapping dictionaries
	Save ID mapping tables
	Saving mappers from the command-line
	Saving mappers using Python script
	Custom filenames for saving ID mappers

	Use examples
	Running on Command-line
	Merging reconstructions built using different templates

	Importing Python package
	Studying model versions

	Citing mergem
	Acknowledgements
	License
	Contact

